Are cobots inherently safe?

Results from the Global Robotics Report 2019 identified that 79 per cent of automation distributors do not believe their customers understand the safety requirements of installing a collaborative robot. As one of the fastest growing sectors of the robot market, this lack of knowledge could be dangerous. Nigel Smith, managing director of Toshiba Machine partner TM Robotics, quashes some common misconceptions about collaborative robot safety.

Collaborative robots, often referred to as cobots, have been heavily marketed as unguarded and easy to integrate machines that can work seamlessly alongside human workers. However, this doesn’t necessarily make these machines exempt from the safety regulations associated with regular industrial robots.

 

Standards for cobot safety

While there are significant differences between cobots and their industrial counterparts, the industry does not acknowledge cobots as a separate entity. As far as safety is concerned, cobots are subject to the same stringent regulations as traditional robot variations — that’s your SCARA, six-axis and Cartesian models.

 

Robots for use in manufacturing are subject to two distinct standards, ISO 10218-1:2011 Robots and Robotic Devices - Safety Requirements for Industrial Robots and ISO 10218-2:2011 - Part 2: Robot Systems and Integration. At present, there is no comprehensive standard that has been exclusively developed for the safety collaborative robots, but there is plenty of guidance available.

 

Cobot end users should adhere to the most relevant published guidance contained in the ISO 10218 standards, a report entitled Collision and Injury Criteria When Working with Collaborative Robots. Additionally, there was a technical specification released in February 2016, ISO/TS 15066. This specification was published to provide safety guidelines for the use of robots in collaborative applications and determines guidelines for force limitation, maximum allowable robot power and speed.

 

Performing a risk assessment

There’s plenty of literature on the safety requirements of collaborative robots, but the problem is that this information is often overlooked. Due to the way cobots have been marketed, many plant managers mistakenly assume that all cobots are automatically safe for use alongside their employees. After all, they are ‘collaborative’. However, this misconception simply isn’t true.

 

Deploying a cobot safely requires a comprehensive risk assessment. This should consider the risks that may occur while the robot is in operation, performing the tasks required of it, as well as the potential risks when the cobot is between tasks.

 

Unlike traditional variations, cobots are often lightweight and portable. Therefore, these machines are ideal to be used for various tasks within a factory. In this instance, it is imperative that the plant manager assesses how the safety may be compromised when the cobot is in transit. For instance, being moved from one section of the production line to another. In addition, an assessment is required for every separate activity and task the cobot will perform.

 

Considering packaging applications as an example. A risk assessment may find that, in order to operate at full speed and meet palletising KPIs, fencing around the cobot is required to maintain worker safety.  Albeit standard practice with traditional industrial robots, fencing usually isn’t considered when purchasing a cobot. Therefore, these additional safety features often aren’t budgeted for.

 

To cobot, or not?

Motivation for most automation investments is to increase productivity and output. Therefore, reducing a cobots operating speed in order to remove safety fencing does not make sense from a business or manufacturing perspective. What’s more, physically separating the robot from human workers removes the entire nature of the machine. Put simply, it is no longer collaborative.

 

In these instances, it is worth considering whether a cobot is what you really need or if a traditional robot might be more suitable. Six-axis robots, for instance, have long been used to increase productivity in packaging applications. For many of these packaging and palletising tasks, there’s no real need for human interaction with the robot. As a result, enabling this collaboration through investment in a cobot doesn’t assist productivity or output.

 

There’s no doubt that cobots have their place in the factory. In fact, reports suggest that the global cobot market will grow to a huge $3,811.483 million by 2021 — and we’re not surprised.

 

The huge growth in the cobot market represents the view that cobots can be an ideal first step towards automated processes. However, as the results of the Global Robotics Report 2019 suggest, understanding of these machines and their safety requirements is lacking. To avoid hazards in the factory — and poor investments from end users — greater clarity of what makes a cobot is required.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Midwest Motion Products is a leading provider of robust and reliable Motion Control Products.

Midwest Motion Products is a leading provider of robust and reliable Motion Control Products.

MMP specializes in supplying high-quality Brushed & Brushless DC Motors & Gearmotors for Robotics and Automation Equipment with a wide range of motor windings and gear ratios. With an impressive track record of more than 8,000 released DC Gearmotors designs and over 2,000,000 individual part numbers, we are renowned for our ability to handle large-scale orders. Due to our huge on-hand inventory, we are also well known for lightning-fast delivery of our standard products. We take pride in our dedicated customer service and our team of knowledgeable sales and engineering experts who are ready to assist you with custom design solutions tailored to your specific application. Additionally, we also offer a wide range of complimentary products, such as DC Motor Controls, DC Linear Actuators, AC-DC power Supplies, and DC Servo Amplifiers and others.