Google to incubate its robotics and drone divisions under Google X

By Mike Wheatley for SiliconAngle:  Google is planning an organizational reshuffle that will see its secretive robotics department and drone business folded into its Google X labs.

Google’s robotics division, and the drone group it created when it acquired Titan Aerospace in 2014, will both fall under the Google X umbrella when the reshuffle takes place some time next year, Re/Code reported.

Google X is the secretive part of Google that develops some of its most futuristic, bleeding edge technologies. These include its famous self-driving cars, Project Loon (Wi-Fi hot air balloons), and its airborne wind turbines. Google X operates as a standalone company under Google’s parent Alphabet Inc., which was created following Google’s corporate restructuring earlier this year.

Google X’s projects are largely experimental and extremely uncertain in terms of a business model. Nevertheless, Google obviously deems it the best place to be for its robotics division, which has been left leaderless ever since Andy Rubin quit the Web giant last year. Previously, there was speculation that the robotics division may become a standalone company under Alphabet, but today’s news would indicate that’s not going to happen any time soon.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ResinDekĀ® TRIGARDĀ® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

ResinDek® TRIGARD® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

To maximize the productivity of an autonomous mobile robot (AMR) or automatic guided vehicle (AGV) deployment, it's critical to create the optimal environment that allows the vehicles to perform at their peak. For that reason, Cornerstone Specialty Wood Products, LLC® (www.resindek.com) created the TriGard® ESD Ultra finish for its ResinDek® engineered flooring panels. The TriGard ESD Ultra finish is ideal for high-traffic robotic applications characterized by highly repetitive movement patterns and defined travel paths.