Autonomous Drifting

From AMREL:

You know how the stuntmen make fast cars drift in action movies? Have you ever wanted to make a remote-controlled toy car drift like that? Of course you have.  If there ever were awards for endeavors that sound silly, but is actually technically interesting, then the folks at MIT’s Aerospace Controls Lab would surely be nominated.

Unmanned systems are rarely fully autonomous.  Instead, researchers are pursuing “sliding” autonomy, i.e. an operator retains control, while some behaviors are made autonomous. Aerospace Controls Lab decided to teach a remote-control toy car how to autonomously drift.

They started by running their learning algorithm through simulations.  Information from these simulations was transferred to performance modifiers. When the car was run through its drifting actions in reality, the algorithm was constantly modified. The result is a car that can maintain drifting in a full circle even when salt is added to the floor, or another vehicle interferes with it.

 

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ResinDek® TRIGARD® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

ResinDek® TRIGARD® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

To maximize the productivity of an autonomous mobile robot (AMR) or automatic guided vehicle (AGV) deployment, it's critical to create the optimal environment that allows the vehicles to perform at their peak. For that reason, Cornerstone Specialty Wood Products, LLC® (www.resindek.com) created the TriGard® ESD Ultra finish for its ResinDek® engineered flooring panels. The TriGard ESD Ultra finish is ideal for high-traffic robotic applications characterized by highly repetitive movement patterns and defined travel paths.